62 resultados para Column liquid chromatography-mass spectrometry

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly sensitive and simple analytical method was developed for analyzing the binary mixed pesticides of prometryne and acetochlor in soil–water system by gas chromatography/mass spectrometry (GC/MS). The sample solution was first purified by C18 solid-phase extraction column, which was leached by acetone. The leachate was enriched to 1.0 mL by pressure blowing concentrator and then analyzed by GC/MS. The linear calibration curves were showed in the range of 1–15 μg/mL with a correlation coefficient of 0.9991. The average recoveries (n = 5) were between 95.3 and 115.7%, with relative standard deviations ranged from 1.71 and 7.95%. The limits of detection of Prometryne/Acetochlor were up to 0.06 and 0.17 μg/mL, respectively. This method provides a reliable approach to examine and evaluate the residues of prometryne and acetochlor in the soil–water system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deuterated water (²H₂O), a stable isotopic tracer, provides a convenient and reliable way to label multiple cellular biomass components (macromolecules), thus permitting the calculation of their synthesis rates. Here, we have combined ²H₂O labelling, GC-MS analysis and a novel cell fractionation method to extract multiple biomass components (DNA, protein and lipids) from the one biological sample, thus permitting the simultaneous measurement of DNA (cell proliferation), protein and lipid synthesis rates. We have used this approach to characterize the turnover rates and metabolism of a panel of mammalian cells in vitro (muscle C2C12 and colon cancer cell lines). Our data show that in actively-proliferating cells, biomass synthesis rates are strongly linked to the rate of cell division. Furthermore, in both proliferating and non-proliferating cells, it is the lipid pool that undergoes the most rapid turnover when compared to DNA and protein. Finally, our data in human colon cancer cell lines reveal a marked heterogeneity in the reliance on the de novo lipogenic pathway, with the cells being dependent on both 'self-made' and exogenously-derived fatty acid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ginkgo biloba is one of the most popular herbal medicines in the world, due to its purported pharmacological effects, including memory-enhancing, cognition-improving, and antiplatelet effects. When used in the elderly, Ginkgo has a high potential for interactions with cardiovascular drugs. This study aimed to investigate the effects of the standard Ginkgo biloba extract (EGB 761) treatment on the pharmacokinetics of propranolol and its metabolism to form Ndesisopropylpropranolol (NDP) in rats. We also examined the activity and expression of cytochrome P450 (CYP) 1A and other CYPs in rats treated with EGb 761 at 10 and 100 mg/kg/day for 10 days. A single oral dose of propranolol (10 mg/kg) was administered on day 11 and the concentrations of both propranolol and NDP were determined using validated liquid chromatography-mass spectrometry (LC-MS) methods. The levels of mRNA and protein of various CYPs were determined by RT-PCR and Western blotting analysis, respectively. Pretreatment of EGb 761 at 100 mg/kg, but not 10 mg/kg, for 10 days significantly reduced the area under the plasma concentration-time curve (AUC) and maximum plasma concentration (C max) of propranolol, whereas those values of NDP were significantly increased. CYP1A1, 1A2, 2B1/2, and 3A1 activities and gene expression in the rat liver were significantly increased in a dose-dependent manner by pretreatment with EGb 761. The ex-vivo formation of NDP in liver microsomes from rats pretreated with EGb 761 was markedly enhanced. The formation of NDP from propranolol in liver microsomes was significantly inhibited by α- naphthoflavone (ANF, a selective CYP1A2 inhibitor), but not by quinidine (a CYP2D inhibitor). These results indicated that EGb 761 pretreatment decreased the plasma concentrations of propranolol by accelerated conversion of parental drug to NDP due to induction of CYP1A2. EGb 761 pretreatment also significantly induced CYP2B1/2 and CYP3A1, suggesting potential interactions with substrate drugs for these two enzymes. Further study is needed to explore the potential for gingko-drug interactions and the clinical impact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although the association between obesity and hypertension is well known, the underlying mechanism remains elusive. Previously, we have shown that 3 week fat feeding in rabbits produces greater visceral adiposity, hypertension, tachycardia and elevated renal sympathetic nerve activity compared to rabbits on a normal diet. Because hyperinsulinaemia, hyperleptinemia and dyslipidaemia are independent cardiovascular risk factors associated with hypertension we compared plasma insulin, leptin and lipid profiles in male New Zealand White rabbits fed a normal fat diet (NFD 4.3% fat, n = 11) or high fat diet (HFD 13.4% fat, n = 13) at days 1, 2, 3 and weeks 1, 2, 3 of the diet. Plasma concentrations of diacylglyceride (DG), triacylglyceride (TG), ceramide and cholesteryl esters (CE) were obtained after analysis by liquid chromatography mass spectrometry. Plasma insulin and glucose increased within the first 3 days of the diet in HFD rabbits (P <0.05) and remained elevated at week 1 (P <0.05). Blood pressure and heart rate followed a similar pattern. By contrast, in both groups, plasma leptin levels remained unchanged during the first few days (P >0.05), increasing by week 3 in fat fed animals alone (P <0.05). Concentrations of total DG, TG, CE and Ceramide at week 3 did not differ between groups (P >0.05). Our data show plasma insulin increases rapidly following consumption of a HFD and suggests that it may play a role in the rapid rise of blood pressure. Dyslipidaemia does not appear to contribute to the hypertension in this animal model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metabolic engineering of omega-3 long-chain (≥C20) polyunsaturated fatty acids (ω3 LC-PUFA) in oilseeds has been one of the key targets in recent years. By expressing a transgenic pathway for enhancing the synthesis of the ω3 LC-PUFA docosahexaenoic acid (DHA) from endogenous α-linolenic acid (ALA), we obtained the production of fish oil-like proportions of DHA in Arabidopsis seed oil. Liquid chromatography-mass spectrometry (LC-MS) was used to characterize the triacylglycerol (TAG), diacylglycerol (DAG) and phospholipid (PL) lipid classes in the transgenic and wild type Arabidopsis seeds at both developing and mature stages. The analysis identified the appearance of several abundant DHA-containing phosphatidylcholine (PC), DAG and TAG molecular species in mature seeds. The relative abundances of PL, DAG, and TAG species showed a preferred combination of LC-PUFA with ALA in the transgenic seeds, where LC-PUFA were esterified in positions usually occupied by 20:1ω9. Trace amounts of di-DHA PC and tri-DHA TAG were identified and confirmed by high resolution MS/MS. Studying the lipidome in transgenic seeds provided insights into where DHA accumulated and combined with other fatty acids of neutral and phospholipids from the developing and mature seeds. © 2014 Zhou, Callahan, Shrestha, Liu, Petrie and Singh.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in high-throughput, comprehensive small molecule analytical techniques have seen the development of the field of metabolomics. The coupling of mass spectrometry with high-resolution chromatography provides extensive chemical profiles from complex biological extracts. These profiles include thousands of compounds linked to gene expression, and can be used as taxonomic characters. Studies have shown metabolite profiles to be taxon specific in a range of organisms, but few have investigated taxonomically problematic plant taxa. This study used a phenetic analysis of metabolite profiles to test taxonomic boundaries in the Olearia phlogopappa (Asteraceae) complex as delimited by morphological data. Metabolite profiles were generated from both field- and shade house-grown material, using liquid chromatography-mass spectrometry (LC-MS). Aligned profiles of 51 samples from 12 taxa gave a final dataset of over 10,000 features. Multivariate analyses of field and shade house material gave congruent results, both confirming the distinctiveness of the morphologically defined species and subspecies in this complex. Metabolomics has great potential in alpha taxonomy, especially for testing the boundaries of closely related taxa where DNA sequence data has been uninformative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperglycemia causes diabetic nephropathy, a condition for which there are no specific diagnostic markers thatpredict progression to renal failure. Here we describe a multiplatform metabolomic analysis of urine from individualswith type 2 diabetes, collected before and immediately following experimental hyperglycemia. We used targetednuclear magnetic resonance spectroscopy (NMR), liquid chromatography - mass spectrometry (LC-MS) and gaschromatography - MS (GC-MS) to identify markers of hyperglycemia. Following optimization of data normalisation andstatistical analysis, we identified a reproducible NMR and LC-MS based urine signature of hyperglycemia. Significantincreases of alanine, alloisoleucine, isoleucine, leucine, N-isovaleroylglycine, valine, choline, lactate and taurine anddecreases of arginine, gamma-aminobutyric acid, hippurate, suberate and N-acetylglutamate were observed. GC-MSanalysis identified a number of metabolites differentially present in post-glucose versus baseline urine, but these could not be identified using current metabolite libraries. This analysis is an important first step towards identifying biomarkers of early-stage diabetic nephropathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Phenol-soluble modulins (PSMs) are amphipathic, pro-inflammatory proteins secreted by most Staphylococcus aureus isolates. This study tested the hypothesis that in vitro PSM production levels are associated with specific clinical phenotypes. METHODS: 177 methicillin-resistant S. aureus (MRSA) isolates from infective endocarditis (IE), skin and soft tissue infection (SSTI), and hospital-acquired/ventilator-associated pneumonia (HAP) were matched by geographic origin, then genotyped using spa-typing. In vitro PSM production was measured by high performance liquid chromatography/mass spectrometry. Statistical analysis was performed using Chi-squared or Kruskal-Wallis tests as appropriate. RESULTS: Spa type 1 was significantly more common in SSTI isolates (62.7% SSTI; 1.7% IE; 16.9% HAP; p < 0.0001) while HAP and IE isolates were more commonly spa type 2 (0% SSTI; 37.3% IE; 40.7% HAP; p < 0.0001). USA300 isolates produced the highest levels of PSMs in vitro. SSTI isolates produced significantly higher quantities of PSMα1-4, PSMβ1, and δ-toxin than other isolates (p < 0.001). These findings persisted when USA300 isolates were excluded from analysis. CONCLUSIONS: Increased in vitro production of PSMs is associated with an SSTI clinical source. This significant association persisted after exclusion of USA300 genotype isolates from analysis, suggesting that PSMs play a particularly important role in the pathogenesis of SSTI as compared to other infection types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many important food crops produce cyanogenic glucosides as natural defense compounds to protect against herbivory or pathogen attack. It has also been suggested that these nitrogen-based secondary metabolites act as storage reserves of nitrogen. In sorghum, three key genes, CYP79A1, CYP71E1 and UGT85B1, encode two Cytochrome P450s and a glycosyltransferase, respectively, the enzymes essential for synthesis of the cyanogenic glucoside dhurrin. Here, we report the use of targeted induced local lesions in genomes (TILLING) to identify a line with a mutation resulting in a premature stop codon in the N-terminal region of UGT85B1. Plants homozygous for this mutation do not produce dhurrin and are designated tcd2 (totally cyanide deficient 2) mutants. They have reduced vigor, being dwarfed, with poor root development and low fertility. Analysis using liquid chromatography-mass spectrometry (LC-MS) shows that tcd2 mutants accumulate numerous dhurrin pathway-derived metabolites, some of which are similar to those observed in transgenic Arabidopsis expressing the CYP79A1 and CYP71E1 genes. Our results demonstrate that UGT85B1 is essential for formation of dhurrin in sorghum with no co-expressed endogenous UDP-glucosyltransferases able to replace it. The tcd2 mutant suffers from self-intoxication because sorghum does not have a feedback mechanism to inhibit the initial steps of dhurrin biosynthesis when the glucosyltransferase activity required to complete the synthesis of dhurrin is lacking. The LC-MS analyses also revealed the presence of metabolites in the tcd2 mutant which have been suggested to be derived from dhurrin via endogenous pathways for nitrogen recovery, thus indicating which enzymes may be involved in such pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-performance liquid chromatography (HPLC) with tris(2,2-bipyridyl)ruthenium(II) chemiluminescence detection methodology is reported for the determination of the atypical antipsychotic drug quetiapine and the observation of its major active and inactive metabolites in human urine and serum. The method uses a monolithic chromatographic column allowing high flow rates of 3mL min−1 enabling rapid quantification. Flow injection analysis (FIA) with tris(2,2-bipyridyl)ruthenium(II) chemiluminescence detection and HPLC time of flight mass spectrometry (TOF-MS) were used for the determination of quetiapine in a pharmaceutical preparation to establish its suitability as a calibration standard. The limit of detection achieved with FIA was 2×10−11 mol L−1 in simple aqueous solution. The limits of detection achieved with HPLC were 7×10−8 and 2×10−10 mol L−1 in urine and serum, respectively. The calibration range for FIA was between 5×10−9 and 1×10−6 mol L−1. The calibration ranges for HPLC were between 1×10−7–1×10−4 and 1×10−8–1×10−4 mol L−1 in urine and serum, respectively. The quetiapine concentrations in patient samples were found to be 3×10−6 mol L−1 in urine and 7×10−7 mol L−1 in serum. Without the need for preconcentration, the HPLC detection limits compared favourably with those in previously published methodologies. The metabolites were identified using HPLC-TOF-MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selection of two orthogonal columns for two-dimensional high performance liquid chromatography (LC×LC) separation of natural product extracts can be a labour intensive and time consuming process and in many cases is an entirely trial-and-error approach. This paper introduces a blind optimisation method for column selection of a black box of constituent components. A data processing pipeline, created in the open source application OpenMS®, was developed to map the components within the mixture of equal mass across a library of HPLC columns; LC×LC separation space utilisation was compared by measuring the fractional surface coverage, fcoverage. It was found that for a test mixture from an opium poppy (Papaver somniferum) extract, the combination of diphenyl and C18 stationary phases provided a predicted fcoverage of 0.48 and was matched with an actual usage of 0.43. OpenMS®, in conjunction with algorithms designed in house, have allowed for a significantly quicker selection of two orthogonal columns, which have been optimised for a LC×LC separation of crude extractions of plant material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various species in genus Hibiscus are traditionally known for their therapeutic attributes. The present study focused on the phytochemical analysis of a rather unexplored species Hibiscus caesius (H. caesius), using high-pressure liquid chromatography coupled with mass spectrometry (HPLC-MS). The analysis revealed five major compounds in the aqueous extract, viz. vanillic acid, protocatechoic acid, quercetin, quercetin glucoside and apigenin, being reported for the first time in H. caesius. Literature suggests that these compounds have important pharmacological traits such as anti-cancer, anti-inflammatory, anti-bacterial and hepatoprotective etc. however, this requires further pharmacological investigations at in vitro and in vivo scale. The above study concluded the medicinal potential of H. caesius.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Widely known for its recreational use, the cannabis plant also has the potential to act as an antibacterial agent in the medicinal field. The analysis of cannabis plants/products in both pharmacological and forensic studies often requires the separation of compounds of interest and/or accurate identification of the whole cannabinoid profile. In order to provide a complete separation and detection of cannabinoids, a new two-dimensional liquid chromatography method has been developed using acidic potassium permanganate chemiluminescence detection, which has been shown to be selective for cannabinoids. This was carried out using a Luna 100 Å CN column and a Poroshell 120 EC-C18 column in the first and second dimensions, respectively. The method has utilized a large amount of the available separation space with a spreading angle of 48.4° and a correlation of 0.66 allowing the determination of more than 120 constituents and mass spectral identification of ten cannabinoids in a single analytical run. The method has the potential to improve research involved in the characterization of sensitive, complex matrices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have combined high-performance liquid chromatography (HPLC) separations using a monolithic column with acidic potassium permanganate and tris(2,2′-bipyridyl)ruthenium(II) chemiluminescence detection in a rapid and highly sensitive method to monitor the process of extracting opiate alkaloids from Papaver somniferum. Due to the high flow rates allowed with the monolithic column and the inherent selectivity of the chemiluminescence reactions, the four predominant alkaloids – morphine, codeine, oripavine and thebaine – were determined in less than 2 min. The results obtained with numerous process samples compared favourable with those of the standard HPLC methodology. Limits of detection were 1 × 10−10 M, 5 × 10−10 M, 5 × 10−10 M and 1 × 10−9 M, for morphine, codeine, oripavine and thebaine, respectively.